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Abstract. Online advertising has seen great growth over the past few years. 

Advertisers have gotten better results with campaigns targeted at more specific 

audiences. Ad networks with few visits are unable to create such campaigns and 

hence are moving forward towards a new model, consisting of a huge global ad 

exchange market.  In this market millions of advertisers compete for the ad 

space so that their ad will be shown to users upon visiting a page. In selecting 

the best candidate from all possibilities algorithms able to process advertiser’s 

requirements in tenths of seconds are needed.  To face this problem we have 

developed algorithms using techniques such as threads, AVL trees with hash, 

multiple node trees or Hadoop technology. Throughout this article we will show 

the results gained from each algorithm, a comparative performance analysis and 

some conclusions. We have also proposed some future lines of work.  

Keywords: Ad exchange, online advertising algorithms, parallelism, AVL 

trees, multi-node trees, Hadoop, fuzzy logic. 

1 Introduction 

Online advertising offers advertisers great advantages when it comes to orienting 

campaigns to a particularly specified audience or making real-time edits. This 

explains why more advertisers are choosing to pay for publicity online [1]. Ad 

networks allow advertisers to post their ads on editor's pages. Editors are the ones 

with at least one web page and rent space for banners or other such adverts in return 

for commission. 

As time goes on advertisers have been becoming more demanding with the 

requirements needed to reach an ever more specific audience. Advertisers segment 

their audiences using various attributes such as city, time, gender, keywords, device 

or operating system. This is known as microtargeting [2] and reduces the number of 

visits which can comply with their requirements, but au contraire advertisers pay a 
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higher price. Micro-targeting consists of segmenting an audience in line with various 

attributes inn order to be directed towards a small group with the same interest. 

Doing this ensures adverts are only shown to users complying with the advertisers 

requirements and hence are more likely to buy the product. Small ad networks cannot 

offer such specific campaigns given the fact they do not receive enough visits, and 

that only a small part actually complies with advertisers requirements. It must also be 

mentioned that many visitors are not shown a single advert as they do not comply 

with the set requirements. 

That is why it has become vital for small networks to work together to create one 

large global Ad Exchange Market. Each network is composed of a group of 

advertisers and a group of editors. In order to manage the exchange we have to take 

on some tasks such as invoice delivery, private policy [3] and fraud prevention [4] but 

without a doubt the most important task and what we are going to focus on here is 

selecting the best candidate from all possible candidates and doing it in the shortest 

time possible. 

Some studies deal with the various factors that should cover the ads-exchange 

algorithms to assign a value to the Quality Score of each campaign. This research 

estimates this parameter depending on the performance obtained when other factors 

were shown [5]. There are also reports that aim to optimize optical price or the best 

candidate based on a number of parameters by the use of complex mathematical 

formulas [6]. We will focus on comparing the computational costs of several 

algorithms whose objective is to select the best candidate in the best possible time. 

We assigned random values to the Quality Score as assuming that they have already 

been calculated. 

To solve this problem we have developed various solutions. Firstly, we applied 

parallelism through threads in the C# programming environment; this allows multiple 

radiuses to be run simultaneously.  

We also added fuzzy logic to show adverts to visits that do not exactly comply 

with advertiser’s requirements. 

We then proposed other solutions where a tree structure is created in order to 

reduce the number of comparisons. To do so we used hash coded AVL trees and 

multiple node trees. These structures make it possible to create tree branches, and 

hence improve algorithm efficiency.  

The final algorithm was developed using the language Pig Latin, from Apache 

Hadoop. This platform has the necessary tools to simply and efficiently solve Big 

Data problems.  

For each algorithm we created a table of results and then compared them. Finally, 

we came to some conclusions regarding what we consider the best solution in terms 

of parameters and then proposed a series of improvements for the future. 

2 Description of the Problem to be Solved 

Due to the fact there are millions of advertisers and of which each and every one is 

simultaneously creating multiple campaigns, selecting an ad to be shown is a rather 

complex task.  

78

Luis Miralles Pechuán, Claudia Sánchez Gómez, and Lourdes Martínez Villaseñor

Research in Computing Science 84 (2014)



To select the best advertiser we have to take them all into account, and give an 

answer in less than 0.1 seconds [6], so it is of the utmost importance to really design 

efficient algorithms.  

The problem we are trying to solve requires selecting the most adequate campaign 

for each visit in the shortest time possible. To do this the requirements of each and 

every campaign need to be analyzed. 

Should there be various advertisers who comply with the said requirements; the 

one with the highest Ad Rank is selected. The Ad Rank is a parameter aiming at better 

profits for the network but at the same time showing quality ads. The Ad Rank 

formula is:  

Ad Rank = CPC x Quality Score 

Each platform uses its own method to calculate the Quality Score value, for 

example Google has never revealed how they calculate theirs. 

The advertiser’s parameter format is shown in table 1 below, it will be the same 

for the visit’s parameter only with the Quality Score and CPC values removed. 

Table 1. Advertisers selected parameter values. 

Hour Browser Browser 

Version 

OS OS 

Version 

Parameter 

N 

… 

Quality 

Score 

CPC 

3 Chrome 20.0.1132.47 Macintosh Intel 10.5 … 0,634 1,695 

14 Chrome 22.0.1229.94 Windows XP … 0,982 6,088 

15 
I. 

Explorer 
8.0 Windows XP … 0,796 9,370 

1 
I. 

Explorer 
7.0 Windows XP … 0,730 6,856 

7 Chrome 22.0.1201.0 Windows Vista … 0,545 1,704 

 
The values of each column represented in table 1 are as follows: 

1. Hour: Refers to the time of the day the visit was made.  

2. Browser: Refers to the browser the visit came from, most commonly Internet 

Explorer or Chrome.  

3. Browser version: This parameter refers to concrete browser version.  Browsers 

are constantly getting faster and more secure version updates.  

4. Operating System: The most common ones are Windows, Mac or Linux. 

5. OS Version: Just like browsers, OS's have their version e.g. Windows 7, 8 or Mac 

OS X Lion. 

6. Flash version: Some browsers have flash installed. Some versions include 11.3 

r31, 10.0 r32 and 10.2 r153.  

7. Has flash? : Indicates whether or not parameter uses flash or not. 

8. Screen bitrate: This indicates the number of bits needed to show a pixel, usually 

32 bits. 

9. Screen resolution: Number of pixels by width and height of the on screen image.  

10. Country: We can know the country using the users IP number.  
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11. City: As well as seeing the country of visit origin we can also see the specific 

city. 

12. Language: This indicates the OS language, for example: en, en-us etc…. 

13. Network address: This refers to the ISP url the user is visiting from.  

14. Network name: This refers to the name of the network being used by the user. 

15. Access page: The access page is page visited previous to the visit. Most come 

from search engines but they can also be directly accessed, or through a link. 

16. Visit type: User visit types can be direct or referrals using a search engine or any 

other page type. 

17. CPC: Cost per Click. The maximum value an advertiser is willing to pay for an 

ad to be shown 

18. Quality Score: This indicates the ad quality and is calculated based upon many 

factors such as the number of click per view. 

In table 2 we can see configuration options. The numbers in each column 

represent the advertisers selected parameters; each number corresponds to the 

parameters described above.  

Table 2. Option parameter configuration 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Option 1  X  X      X       
Option 2  X  X      X X X   X  
Option 3 X X X X X   X X X X X   X  
Option 4 X X X X X   X X X X X X X X X 

Google uses supercomputers to solve complex algorithms in a tenth of a second. 

For example, when we search for "Brazil" at google.com we are given 3,230,000,000 

results thanks to the efficient algorithms run on such supercomputers. To solve the 

problem we have used an Intel(R) Core (TM) i5-2400 CPU @ 3.10 GHz with 16Gb 

RAM running Windows 7 Pro Service Pack 1 64 bit. 

By using this hardware we are going to solve the problem in different ways.  We 

have developed thread code and AVL trees as well as Multi-Node trees within the 

Microsoft Visual C# 2010, C# Express environment. We have also tried Pig Latin 

using technology developed by Yahoo called Hadoop. To run Hadoop we have a 

virtual machine called Hortonworks Sandbox 2.1 on the OS Red Hat, which running 

Oracle Virtual Box, 4.3.14 r95030 and the aforementioned hardware. 

3 Application of Parallelism and Fuzzy Logic within Ad 

Exchanges  

3.1 Applying Parallelism to Ad Exchanges 

In today's world we have the power of multi-core processors allowing huge volumes 

of information to be analyzed. Parallel computing is a processing method using 
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various instructions at once, as the name suggests, in parallel. This is based on the 

principle that large scale problems can be divided into smaller ones and hence be 

resolved simultaneously.  

Threads are used in parallel computing, these are tasks that can be done at the 

same time as others. Different execution threads share a series of resources such as 

memory space, files or authentication keys.   

Parallelism allows various advertisers to be simultaneously compared rather than each 

visit having to be compared one at a time. 
The program we have developed creates 100.000 threads, and provided there is no 

time limit, can be executed in parallel. Every 100.000 threads can compare 100 

campaigns that have been stored in a file along with the visit, making a total of 

1.000.000 campaigns. Upon finishing the program, it writes the best solution in a file. 

We have repeated this step for 1000 visits. 

The algorithm we have developed runs using three variables: The option, the 

number of seconds and the threshold of the degree of similarity. The variable 

“Option” indicates the number of parameters the advertiser has chosen such as those 

shown in table 2. For example, option 1 shows the chosen browser, OS and country. 

The variable “Seconds” indicates the maximum time to calculate  a solution and then 

the variable “Threshold” represents the minimum similarity a visit must have in 

relation to the advertiser’s requirements in order to be shown the ad.  

The program pseudo-code is: 

Begin_Main_Program 

From visit = 1 to 1.000 

 from j=1 to 100.000 

  Create_thread(j); 

 from k=1 to 100.000 

  run_thread(k); 

 
 While (thread_finish) 

  Wait(); 

 Save_best_solution(); 

End_Main_Program 

 
Run_Thread_Function 

 Read_advertisers_from file(k); 

 Compare_advertisers_with_visits(); 

 if(solution > global_solution) 

  global_solution = solution; 

 if(Last_thread()) 

  Write_solution_file(global_solution); 

End_Run_Thread_Function 

3.2 Application of Fuzzy Logic within Ad Exchanges 

One of the biggest problems that come up when advertisers configure many a 

parameter is that very few visits comply with their requirements and hence an ad 

receives very few views. To increase ad coverage we can apply fuzzy logic. Using 

this, ads that are very similar but not entirely alike can still be accepted, and hence 

viewed. 
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Fuzzy or Heuristic logic is an extension of traditional logic using concepts similar 

to those of human thought.  While traditional logic uses strict  boundaries to 

determine where certain sets belong, for example, “a person is old if they are older 

than 70”, however should a person be 69, they can still be classed as old. 

Fuzzy Logic allows us to better adapt ourselves to the real world, and understand 

such expressions like “It’s not very cold” or “You’re very young”. When it comes to 

understanding the quantifiers of expressions like “much”, “very” or “a few” we use 

belonging functions to indicate to what extent the element is part of the set. Similarity 

Matrixes are also used to establish a degree of similarity amongst various elements in 

a set. 

In order to establish the degree of similarity applied to our problem, we have 

created a series of matrixes that represent the grade of similarity between visit value 

and configuration value within a campaign on a scale from 0 to 1. 

In table 3 we can see the degree of similarity that exists amongst the main 

languages of visits received by a webpage, given the webpage is in Spanish most 

visits are from Spanish speakers. In this table we can see the degree of similarity 

among Spanish speaking countries is very high. In total we have created 12 tables, 

one for each parameter, on which we wish to apply fuzzy logic. 

Table 3. Similarity matrix for OS language parameter. 

Language Ca En En-Gb En-Us Es Es-419 

Ca 1 X X X X X 

En 0 1 X X X X 

En-Gb 0 0.9 1 X X X 

En-Us 0 0.8 0.7 1 X X 

Es 0 0 0 0 1 X 

Es-419 0 0 0 0 0.9 1 

3.3 Results Obtained from Fuzzy Logic and Parallelism 

With a threshold value of 1 and an option value of 2, the algorithm took a total of 

147,3 seconds to compare just one visit with 1.000.000  million advertiser campaigns. 

If we take the maximum established time of 0.1 seconds into account, we realize that 

this algorithm is unusable, but we have to take into account the fact that this algorithm 

is run on a supercomputer with optimized access to files or allows them to be held in 

memory, so such an algorithm may be viable. 

Due to very high times, we have established a maximum number of seconds from 

which no more threads will be processed. Logically, the higher the number, the more 

threads can be run, and hence bring a better a solution. With a lower threshold more 

visits comply with advertisers requirements, giving better results. The results shown 

in table 4 show the average Ad Rank value. The higher the value, the better the 

quality of ads displayed.    
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Looking at table 5 the number of comparisons increases when using fuzzy logic. 

This is due to the fact that all similarity matrixes have to be run through. Firstly, we 

look at the lines comparing them with visit parameters and then we look at the 

columns comparing them with campaign values. Should the results be 3 and 5, the 

matrix cell [3, 5] will receive a grade of similarity between the two values. 

Table 4. Results of the algorithm for parallelization by time using fuzzy logic.  

 Threshold 1 Sec 2 Sec 3 Sec 5 Sec 10 Sec 15 Sec 25 Sec 

Option 1 

0.7 8,77 8,93 9,00 9,05 9,11 9,16 9,38 

0.8 8,78 8,93 9,00 9,05 9,10 9,16 9,40 

0.9 8,78 8,93 8,98 9,06 9,11 9,19 9,37 

1 8,80 8,94 8,99 9,06 9,11 9,17 9,37 

Option 2 

0.7 8,45 8,62 8,72 8,80 8,88 9,01 9,17 

0.8 8,28 8,54 8,64 8,72 8,85 8,92 9,09 

0.9 6,28 6,89 7,10 7,35 7,65 7,81 7,98 

1 5,01 5,59 6,03 6,26 6,95 7,11 7,54 

Option 3 

0.7 8,50 8,70 8,79 8,88 8,91 9,05 9,17 

0.8 7,50 7,92 8,11 8,29 8,49 8,57 8,70 

0.9 4,50 5,18 5,55 5,96 6,48 6,71 7,04 

1 0,08 0,19 0,25 0,38 0,51 0,74 1,00 

Option 4 

0.7 8,10 8,35 8,49 8,64 8,75 8,83 9,01 

0.8 6,58 7,05 7,34 7,63 7,97 8,09 8,25 

0.9 3,58 4,16 4,64 4,93 5,66 5,97 6,29 

1 0,02 0,06 0,05 0,09 0,17 0,19 0,35 

Table 5. Number of comparisons for 1.000.000 campaigns using and not using fuzzy logic. 

Option    
Comparisons  

Using Fuzzy 

Comparisons not 

using Fuzzy 

1 107.600.000 107.400.000 

2 1.212.300.000 117.273.810 

3 2.035.700.000 134.354.215 

4 2.434.900.000 144.191.923 

 
Both "Using fuzzy" and "Not using fuzzy" comparisons are results of comparing 

visit parameters with 1.000.000 campaign parameters. More time is spent accessing 

files. 

4 Using AVL Trees to Optimize Ad Exchanges 

4.1 Developing Algorithms using AVL Trees 

To improve computing costs of such algorithms we have employed AVL trees and 

hash code. AVL trees take their name from the first letter of the surname of its 
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inventors Adelson-Velskii and Landis. There are binary search trees that satisfy the 

condition that they are always balanced, so that for each node, the height of the left 

branch will never differ by more than one unit of the height of the right branch or vice 

versa.   

A binary search tree is a data structure allowing the organization of attribute 

information; each tree node must comply with the following characteristics: Lower 

Nodes to the left of a particular node must contain lower values; lower nodes to the 

right must contain higher values. 

For example, let’s say the advertiser has decided to configure the following 

parameters with the following values: Time=21, Browser= Firefox, Browser Version 

= 14.0.1, OS = Windows, Country = Spain and City = Pamplona. In such a case the 

chain value will be: “21Firefox14.0.1WindowsXPSpainPamplona”. When the hash 

function is applied to the chain the value becomes: 

“2C1ECBEA35C21B712410CE7F7D0BB”. 

Via a hash our algorithm codes the field values of each one of 1.000.000 

advertiser’s campaigns and then adds them to the AVL tree as nodes. Each node uses 

an alphanumeric keychain generated by the hash function representing the parameter 

combination and an attribute with Ad Rank value. A tree must then be created for 

each of the options, in our case we have four options and hence have created four 

trees. 

4.2 Results Obtained with AVL Trees 

The time needed to process 100.000 visits with 1.000.000 advertisers with this 

algorithm is 1.66 seconds, meaning that the algorithm runs around 9,2 million 

(9.206.250 to be precise) times faster than the threads. This is due to the algorithm not 

needing to access any files as the tree can be loaded from memory, and the number of 

comparisons per visit for option 2 has reduced to 1.172.738.107 with the “Using 

fuzzy” thread option at only 51.03 with AVL trees.  

Table 6. Results obtained from AVL algorithm for 100.000 visits. 

Option       Seconds 
 Average   

Ad Rank 

Average  

comparisons 

1 1,36 9,89 16,65 

2 1,55 8,45 30,42 

3 1,84 1,24 49,74 

4 1,92 0,44 51,03 

 

The average number of comparisons is calculated as the average 100.000 visits. 

The results are the best possible, given that each and every one of 1.000.000 

advertisers has been compared. However, when using threads we had to limit the 

number by the amount of time taken and hence, the results were not the best possible 

achieved. 
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5 Using Multi-Node trees to improve ad performance 

5.1 Developing algorithms using Multi-Node trees 

Each first level node has a number of children representing possible values a 

campaign can achieve. Thus if the first campaign parameter has 29 different values, 

the first level will have 29 children. Should node number 7 on the first level have a 

second parameter of 12 values, then the node shall have 12 children and so forth for 

all parameters. The final tree level will contain the Ad Rank value, and just as with 

the AVL trees we have had to create four Multi-Node trees, one for each 

configuration option. 

To solve the algorithm we tried three different solutions: 

 

1. Unordered trees: These unordered trees consume the least as they do not as they 

do not have any operations to order. The trees are formed from selected 

parameters in advertiser’s campaigns. The possible values are added to the tree as 

campaigns are processed 

2. Ordered Trees: With ordered trees we applied the same process as with the 

unordered trees, though we then ordered them alphabetically by parameter name. 

This was done so that the descending binary search can be used right from the 

tree root to the leaves to obtain the Ad Rank value. 

3. Ordered trees by frequency: In this case, we do the same as the first however we 

order the trees using the frequency with which an advertiser demands a 

parameter. If most advertisers configure the time as 13:00 then the most left hand 

side thread will have this value, and a comparison will be made using this node. 

5.2 Results Obtained by Multi-Node Trees 

Table 7.  Results from Multi-Node trees from 100.000 visits. 

  Not ordered Ordered and using binary 

search 

Ordered by frequency 

  

Option Result Seconds 
Average 

comparisons 
Seconds 

Average 

comparisons 
Seconds 

Average 

comparisons 

1 9,89 0,58 20,59 0,78 37,95 0,53 18,52 

2 8,45 1,18 50,90 1,17 75,68 1,03 43,59 

3 1,24 1,81 73,25 1,86 99,75 1,69 64,93 

4 0,44 1,61 74,98 1,65 102,42 1,65 66,64 

 

As we can see by the number of comparisons the best option is ordering by 

frequency, the second best are the unordered trees and the third best are the ones 

ordered by parameter name and then having a binary search applied. 

Many tree nodes can be formed by four or five nodes so doing a binary search 

doesn’t make much sense, we can also discard the order by frequency option as the 
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algorithm has 0.07% less comparisons and hence ordering them into a tree every time 

a campaign is added would be unjustified. 

6 Hadoop Optimizing Ad Exchanges through Apache Hadoop 

One of the simplest ways to solve the problem and we can safely assume one of the 

less puzzling, uses Hadoop, which was famously developed by a Yahoo employee. 

Apache Hadoop is a framework oriented towards finding solutions to Big Data 

problems, such is the case in point and the fact it also solves our problem in just a few 

lines. 

This language is oriented to take advantage of the clusters and supercomputers of 

large companies such as Yahoo, Amazon and Google. These companies use this kind 

of structure because they run algorithms processing huge amounts of data. 

This platform uses two programming languages, Hive and Pig Latin. To solve our 

problem we used Pig Latin, although it is not as efficient as the trees as it has an 

additional computing cost 151.2 times higher than AVL trees and 205.9 times higher 

than Multi-Node trees ordered by frequency, however it allows the problem to be 

solved in just 10 lines. The code is explained in the program comments below: 

-- ADVERTISERS 

-- Load advertisers table from memory 

Anun0 = Load 'default.anunciantes2' USING 

org.apache.hcatalog.pig.HCatLoader(); 

-- For each line we select the columns that interest us 

Anun1 = Foreach Anun0 Generate $2, $4, $8, $9, $10, $11, $12, $15, 

$19*$20; 

-- Then group the lines together to later select the max Ad Rank 

Anun2 = Group Anun1 by ($0,$1,$2,$3,$4,$5,$6,$7); 

-- Remove groups 

Anun4 = For each Anun3 Generate FLATTEN($0),$1; 

 

-- VISITS 

-- Load advertisers table from memory 

Visitas0 = Load 'default.visitas' USING 

org.apache.hcatalog.pig.HCatLoader(); 

-- For each cell we select the columns that interest us 

Visitas1 = For each Visit0 Generate $2, $4, $8, $9, $10, $11, $12, $15; 

 

-- JOINING VISITS AND ADVERTISERS 

-- We create a table to coincide with both visit and advertise fields 

Visitas2 = Join Visitas1 by ($0,$1,$2,$3,$4,$5,$6,$7), Anun4 by 

($0,$1,$2,$3,$4,$5,$6,$7); 

-- We then select the columns from those tables that interest us 

Res = foreach Visitas2 generate $0,$1,$2,$3,$4,$5,$6,$7,$16; 

 

-- Save answer 

store Res into 'Respuestas';  

In table 8 we can see the results obtained as well as the times needed to obtain 

them. Tests were done with 100.000 visits and 1.000.000 ad campaigns, and the 

results obtained are the same as the ones from the AVL and Multi-Node trees. Time is 

expressed in minutes and seconds, rather than solely seconds as for AVL and Multi-

Node trees. 
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Table 8. Results obtained from the algorithm using Hadoop’s Pig Latin 

 

Option    Seconds   Results 

1 214  9,89 

2 226 8,6 

3 260 1,24 

4 309 0,44 

7 Conclusions 

According to the results, the thread option cannot be considered appropriate due to the 

enormous amount of time required to run the algorithm. One of the reasons behind the 

elevated time scale is the fact the program takes a long time accessing the 10.000 files 

used to save advertiser’s campaigns. The number of total comparisons is the number 

for each thread multiplied by the number of threads, coming to a total of 

24.349.000.000 comparisons, while using trees it does not exceed 103. 

Via Hash, AVL trees give the best results, although they do have two 

disadvantages, firstly the tree needs to be modified for every single campaign, taking 

up a lot of time; secondly, these trees are inadequate for Fuzzy Logic use given that 

upon applying the hash function it gets difficult to compare attributes and establish a 

degree of similarity as they are coded. In order to implement this kind of logic all 

possible parameter relations would have to be hash coded with all possible 

combinations, bringing us to the conclusion that this is an unviable option as it will 

exponentially increase the number of tree nodes. 

Another disadvantage affecting both AVL trees and Multi-Nodes is the 

computational cost of creating the tree, though this is not really anything to worry 

about as it can be done offline. That is to say it is not created at the time of a user 

visit, and hence is not a critical computational cost.   

Multi-Node trees have the advantage over AVLs that they can use Fuzzy Logic. 

This can be done using a simple backtracking algorithm that traverses the tree and 

changes route should the similarity threshold be overcome. Taking these results into 

account, it seems that ordering is not a great advantage as looking at the results 

obtained there is no big difference between the number of neither comparisons nor 

time consumed. 

Finally, if we take the capacity of some of the supercomputers used by technology 

companies into account, Pig Latin is the best option as its algorithm development 

code can be summarized in just ten lines. This has the advantage that errors are highly 

unlikely as well as Fuzzy logic being able to be implemented easily via UDF (User 

Defined Functions), which are user language implementation methods for both 

Python and Java programming languages. 
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8 Future Work 

One possible improvement to this algorithm could be adding fuzzy logic; to do this 

we must make a translation table. If we take into consideration the fact that the three 

browsers in the table are similar we can then code them with the same code. 

To improve comparison block searches upon fuzzy logic application a value could 

be assigned to each parameter. E.G., I. Explorer 8.0 shall be 7 and I. Explorer 8.0 

shall be 9, meaning the similarity between the two will be [7, 9] of the browser 

matrix. With this a number of comparisons per search will be saved, this can be 

calculated using the formula: Comparisons: (Lines/2 + Columns/2), assuming the 

probability of coincidence for all values is the same. 

Another improvement could be to keep the ordered by frequency algorithm and 

instead of ordering it per new campaign, an ordering algorithm shall be applied once 

per 1,000 new campaigns. 

With such formula we can create a tree and then compare each visit with the 

advertisers formed tree. This in turn would make the program run much faster even 

though it would also require more lines of code. 
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