
Ad Exchange Optimization Algorithms on Advertising

Networks

Luis Miralles Pechuán
1,2

, Claudia Sánchez Gómez
1
, and Lourdes Martínez Villaseñor

1

1
Facultad de Ingeniería, Universidad Panamericana, DF,

Mexico

2
Departamento de Ingeniería y Tecnología de Computadores, University of Murcia,

Spain

{lmiralles,cnsanchez,lmartinez}@up.edu.mx

Abstract. Online advertising has seen great growth over the past few years.

Advertisers have gotten better results with campaigns targeted at more specific

audiences. Ad networks with few visits are unable to create such campaigns and

hence are moving forward towards a new model, consisting of a huge global ad

exchange market. In this market millions of advertisers compete for the ad

space so that their ad will be shown to users upon visiting a page. In selecting

the best candidate from all possibilities algorithms able to process advertiser’s

requirements in tenths of seconds are needed. To face this problem we have

developed algorithms using techniques such as threads, AVL trees with hash,

multiple node trees or Hadoop technology. Throughout this article we will show

the results gained from each algorithm, a comparative performance analysis and

some conclusions. We have also proposed some future lines of work.

Keywords: Ad exchange, online advertising algorithms, parallelism, AVL

trees, multi-node trees, Hadoop, fuzzy logic.

1 Introduction

Online advertising offers advertisers great advantages when it comes to orienting

campaigns to a particularly specified audience or making real-time edits. This

explains why more advertisers are choosing to pay for publicity online [1]. Ad

networks allow advertisers to post their ads on editor's pages. Editors are the ones

with at least one web page and rent space for banners or other such adverts in return

for commission.

As time goes on advertisers have been becoming more demanding with the

requirements needed to reach an ever more specific audience. Advertisers segment

their audiences using various attributes such as city, time, gender, keywords, device

or operating system. This is known as microtargeting [2] and reduces the number of

visits which can comply with their requirements, but au contraire advertisers pay a

77 Research in Computing Science 84 (2014)pp. 77–88

higher price. Micro-targeting consists of segmenting an audience in line with various

attributes inn order to be directed towards a small group with the same interest.

Doing this ensures adverts are only shown to users complying with the advertisers

requirements and hence are more likely to buy the product. Small ad networks cannot

offer such specific campaigns given the fact they do not receive enough visits, and

that only a small part actually complies with advertisers requirements. It must also be

mentioned that many visitors are not shown a single advert as they do not comply

with the set requirements.

That is why it has become vital for small networks to work together to create one

large global Ad Exchange Market. Each network is composed of a group of

advertisers and a group of editors. In order to manage the exchange we have to take

on some tasks such as invoice delivery, private policy [3] and fraud prevention [4] but

without a doubt the most important task and what we are going to focus on here is

selecting the best candidate from all possible candidates and doing it in the shortest

time possible.

Some studies deal with the various factors that should cover the ads-exchange

algorithms to assign a value to the Quality Score of each campaign. This research

estimates this parameter depending on the performance obtained when other factors

were shown [5]. There are also reports that aim to optimize optical price or the best

candidate based on a number of parameters by the use of complex mathematical

formulas [6]. We will focus on comparing the computational costs of several

algorithms whose objective is to select the best candidate in the best possible time.

We assigned random values to the Quality Score as assuming that they have already

been calculated.

To solve this problem we have developed various solutions. Firstly, we applied

parallelism through threads in the C# programming environment; this allows multiple

radiuses to be run simultaneously.

We also added fuzzy logic to show adverts to visits that do not exactly comply

with advertiser’s requirements.

We then proposed other solutions where a tree structure is created in order to

reduce the number of comparisons. To do so we used hash coded AVL trees and

multiple node trees. These structures make it possible to create tree branches, and

hence improve algorithm efficiency.

The final algorithm was developed using the language Pig Latin, from Apache

Hadoop. This platform has the necessary tools to simply and efficiently solve Big

Data problems.

For each algorithm we created a table of results and then compared them. Finally,

we came to some conclusions regarding what we consider the best solution in terms

of parameters and then proposed a series of improvements for the future.

2 Description of the Problem to be Solved

Due to the fact there are millions of advertisers and of which each and every one is

simultaneously creating multiple campaigns, selecting an ad to be shown is a rather

complex task.

78

Luis Miralles Pechuán, Claudia Sánchez Gómez, and Lourdes Martínez Villaseñor

Research in Computing Science 84 (2014)

To select the best advertiser we have to take them all into account, and give an

answer in less than 0.1 seconds [6], so it is of the utmost importance to really design

efficient algorithms.

The problem we are trying to solve requires selecting the most adequate campaign

for each visit in the shortest time possible. To do this the requirements of each and

every campaign need to be analyzed.

Should there be various advertisers who comply with the said requirements; the

one with the highest Ad Rank is selected. The Ad Rank is a parameter aiming at better

profits for the network but at the same time showing quality ads. The Ad Rank

formula is:

Ad Rank = CPC x Quality Score

Each platform uses its own method to calculate the Quality Score value, for

example Google has never revealed how they calculate theirs.

The advertiser’s parameter format is shown in table 1 below, it will be the same

for the visit’s parameter only with the Quality Score and CPC values removed.

Table 1. Advertisers selected parameter values.

Hour Browser Browser

Version

OS OS

Version

Parameter

N

…

Quality

Score

CPC

3 Chrome 20.0.1132.47 Macintosh Intel 10.5 … 0,634 1,695

14 Chrome 22.0.1229.94 Windows XP … 0,982 6,088

15
I.

Explorer
8.0 Windows XP … 0,796 9,370

1
I.

Explorer
7.0 Windows XP … 0,730 6,856

7 Chrome 22.0.1201.0 Windows Vista … 0,545 1,704

The values of each column represented in table 1 are as follows:

1. Hour: Refers to the time of the day the visit was made.

2. Browser: Refers to the browser the visit came from, most commonly Internet

Explorer or Chrome.

3. Browser version: This parameter refers to concrete browser version. Browsers

are constantly getting faster and more secure version updates.

4. Operating System: The most common ones are Windows, Mac or Linux.

5. OS Version: Just like browsers, OS's have their version e.g. Windows 7, 8 or Mac

OS X Lion.

6. Flash version: Some browsers have flash installed. Some versions include 11.3

r31, 10.0 r32 and 10.2 r153.

7. Has flash? : Indicates whether or not parameter uses flash or not.

8. Screen bitrate: This indicates the number of bits needed to show a pixel, usually

32 bits.

9. Screen resolution: Number of pixels by width and height of the on screen image.

10. Country: We can know the country using the users IP number.

79

Ad Exchange Optimization Algorithms on Advertising Networks

Research in Computing Science 84 (2014)

11. City: As well as seeing the country of visit origin we can also see the specific

city.

12. Language: This indicates the OS language, for example: en, en-us etc….

13. Network address: This refers to the ISP url the user is visiting from.

14. Network name: This refers to the name of the network being used by the user.

15. Access page: The access page is page visited previous to the visit. Most come

from search engines but they can also be directly accessed, or through a link.

16. Visit type: User visit types can be direct or referrals using a search engine or any

other page type.

17. CPC: Cost per Click. The maximum value an advertiser is willing to pay for an

ad to be shown

18. Quality Score: This indicates the ad quality and is calculated based upon many

factors such as the number of click per view.

In table 2 we can see configuration options. The numbers in each column

represent the advertisers selected parameters; each number corresponds to the

parameters described above.

Table 2. Option parameter configuration

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Option 1 X X X
Option 2 X X X X X X
Option 3 X X X X X X X X X X X
Option 4 X X X X X X X X X X X X X X

Google uses supercomputers to solve complex algorithms in a tenth of a second.

For example, when we search for "Brazil" at google.com we are given 3,230,000,000

results thanks to the efficient algorithms run on such supercomputers. To solve the

problem we have used an Intel(R) Core (TM) i5-2400 CPU @ 3.10 GHz with 16Gb

RAM running Windows 7 Pro Service Pack 1 64 bit.

By using this hardware we are going to solve the problem in different ways. We

have developed thread code and AVL trees as well as Multi-Node trees within the

Microsoft Visual C# 2010, C# Express environment. We have also tried Pig Latin

using technology developed by Yahoo called Hadoop. To run Hadoop we have a

virtual machine called Hortonworks Sandbox 2.1 on the OS Red Hat, which running

Oracle Virtual Box, 4.3.14 r95030 and the aforementioned hardware.

3 Application of Parallelism and Fuzzy Logic within Ad

Exchanges

3.1 Applying Parallelism to Ad Exchanges

In today's world we have the power of multi-core processors allowing huge volumes

of information to be analyzed. Parallel computing is a processing method using

80

Luis Miralles Pechuán, Claudia Sánchez Gómez, and Lourdes Martínez Villaseñor

Research in Computing Science 84 (2014)

various instructions at once, as the name suggests, in parallel. This is based on the

principle that large scale problems can be divided into smaller ones and hence be

resolved simultaneously.

Threads are used in parallel computing, these are tasks that can be done at the

same time as others. Different execution threads share a series of resources such as

memory space, files or authentication keys.

Parallelism allows various advertisers to be simultaneously compared rather than each

visit having to be compared one at a time.
The program we have developed creates 100.000 threads, and provided there is no

time limit, can be executed in parallel. Every 100.000 threads can compare 100

campaigns that have been stored in a file along with the visit, making a total of

1.000.000 campaigns. Upon finishing the program, it writes the best solution in a file.

We have repeated this step for 1000 visits.

The algorithm we have developed runs using three variables: The option, the

number of seconds and the threshold of the degree of similarity. The variable

“Option” indicates the number of parameters the advertiser has chosen such as those

shown in table 2. For example, option 1 shows the chosen browser, OS and country.

The variable “Seconds” indicates the maximum time to calculate a solution and then

the variable “Threshold” represents the minimum similarity a visit must have in

relation to the advertiser’s requirements in order to be shown the ad.

The program pseudo-code is:

Begin_Main_Program

From visit = 1 to 1.000

 from j=1 to 100.000

 Create_thread(j);

 from k=1 to 100.000

 run_thread(k);

 While (thread_finish)

 Wait();

 Save_best_solution();

End_Main_Program

Run_Thread_Function

 Read_advertisers_from file(k);

 Compare_advertisers_with_visits();

 if(solution > global_solution)

 global_solution = solution;

 if(Last_thread())

 Write_solution_file(global_solution);

End_Run_Thread_Function

3.2 Application of Fuzzy Logic within Ad Exchanges

One of the biggest problems that come up when advertisers configure many a

parameter is that very few visits comply with their requirements and hence an ad

receives very few views. To increase ad coverage we can apply fuzzy logic. Using

this, ads that are very similar but not entirely alike can still be accepted, and hence

viewed.

81

Ad Exchange Optimization Algorithms on Advertising Networks

Research in Computing Science 84 (2014)

Fuzzy or Heuristic logic is an extension of traditional logic using concepts similar

to those of human thought. While traditional logic uses strict boundaries to

determine where certain sets belong, for example, “a person is old if they are older

than 70”, however should a person be 69, they can still be classed as old.

Fuzzy Logic allows us to better adapt ourselves to the real world, and understand

such expressions like “It’s not very cold” or “You’re very young”. When it comes to

understanding the quantifiers of expressions like “much”, “very” or “a few” we use

belonging functions to indicate to what extent the element is part of the set. Similarity

Matrixes are also used to establish a degree of similarity amongst various elements in

a set.

In order to establish the degree of similarity applied to our problem, we have

created a series of matrixes that represent the grade of similarity between visit value

and configuration value within a campaign on a scale from 0 to 1.

In table 3 we can see the degree of similarity that exists amongst the main

languages of visits received by a webpage, given the webpage is in Spanish most

visits are from Spanish speakers. In this table we can see the degree of similarity

among Spanish speaking countries is very high. In total we have created 12 tables,

one for each parameter, on which we wish to apply fuzzy logic.

Table 3. Similarity matrix for OS language parameter.

Language Ca En En-Gb En-Us Es Es-419

Ca 1 X X X X X

En 0 1 X X X X

En-Gb 0 0.9 1 X X X

En-Us 0 0.8 0.7 1 X X

Es 0 0 0 0 1 X

Es-419 0 0 0 0 0.9 1

3.3 Results Obtained from Fuzzy Logic and Parallelism

With a threshold value of 1 and an option value of 2, the algorithm took a total of

147,3 seconds to compare just one visit with 1.000.000 million advertiser campaigns.

If we take the maximum established time of 0.1 seconds into account, we realize that

this algorithm is unusable, but we have to take into account the fact that this algorithm

is run on a supercomputer with optimized access to files or allows them to be held in

memory, so such an algorithm may be viable.

Due to very high times, we have established a maximum number of seconds from

which no more threads will be processed. Logically, the higher the number, the more

threads can be run, and hence bring a better a solution. With a lower threshold more

visits comply with advertisers requirements, giving better results. The results shown

in table 4 show the average Ad Rank value. The higher the value, the better the

quality of ads displayed.

82

Luis Miralles Pechuán, Claudia Sánchez Gómez, and Lourdes Martínez Villaseñor

Research in Computing Science 84 (2014)

Looking at table 5 the number of comparisons increases when using fuzzy logic.

This is due to the fact that all similarity matrixes have to be run through. Firstly, we

look at the lines comparing them with visit parameters and then we look at the

columns comparing them with campaign values. Should the results be 3 and 5, the

matrix cell [3, 5] will receive a grade of similarity between the two values.

Table 4. Results of the algorithm for parallelization by time using fuzzy logic.

 Threshold 1 Sec 2 Sec 3 Sec 5 Sec 10 Sec 15 Sec 25 Sec

Option 1

0.7 8,77 8,93 9,00 9,05 9,11 9,16 9,38

0.8 8,78 8,93 9,00 9,05 9,10 9,16 9,40

0.9 8,78 8,93 8,98 9,06 9,11 9,19 9,37

1 8,80 8,94 8,99 9,06 9,11 9,17 9,37

Option 2

0.7 8,45 8,62 8,72 8,80 8,88 9,01 9,17

0.8 8,28 8,54 8,64 8,72 8,85 8,92 9,09

0.9 6,28 6,89 7,10 7,35 7,65 7,81 7,98

1 5,01 5,59 6,03 6,26 6,95 7,11 7,54

Option 3

0.7 8,50 8,70 8,79 8,88 8,91 9,05 9,17

0.8 7,50 7,92 8,11 8,29 8,49 8,57 8,70

0.9 4,50 5,18 5,55 5,96 6,48 6,71 7,04

1 0,08 0,19 0,25 0,38 0,51 0,74 1,00

Option 4

0.7 8,10 8,35 8,49 8,64 8,75 8,83 9,01

0.8 6,58 7,05 7,34 7,63 7,97 8,09 8,25

0.9 3,58 4,16 4,64 4,93 5,66 5,97 6,29

1 0,02 0,06 0,05 0,09 0,17 0,19 0,35

Table 5. Number of comparisons for 1.000.000 campaigns using and not using fuzzy logic.

Option
Comparisons

Using Fuzzy

Comparisons not

using Fuzzy

1 107.600.000 107.400.000

2 1.212.300.000 117.273.810

3 2.035.700.000 134.354.215

4 2.434.900.000 144.191.923

Both "Using fuzzy" and "Not using fuzzy" comparisons are results of comparing

visit parameters with 1.000.000 campaign parameters. More time is spent accessing

files.

4 Using AVL Trees to Optimize Ad Exchanges

4.1 Developing Algorithms using AVL Trees

To improve computing costs of such algorithms we have employed AVL trees and

hash code. AVL trees take their name from the first letter of the surname of its

83

Ad Exchange Optimization Algorithms on Advertising Networks

Research in Computing Science 84 (2014)

inventors Adelson-Velskii and Landis. There are binary search trees that satisfy the

condition that they are always balanced, so that for each node, the height of the left

branch will never differ by more than one unit of the height of the right branch or vice

versa.

A binary search tree is a data structure allowing the organization of attribute

information; each tree node must comply with the following characteristics: Lower

Nodes to the left of a particular node must contain lower values; lower nodes to the

right must contain higher values.

For example, let’s say the advertiser has decided to configure the following

parameters with the following values: Time=21, Browser= Firefox, Browser Version

= 14.0.1, OS = Windows, Country = Spain and City = Pamplona. In such a case the

chain value will be: “21Firefox14.0.1WindowsXPSpainPamplona”. When the hash

function is applied to the chain the value becomes:

“2C1ECBEA35C21B712410CE7F7D0BB”.

Via a hash our algorithm codes the field values of each one of 1.000.000

advertiser’s campaigns and then adds them to the AVL tree as nodes. Each node uses

an alphanumeric keychain generated by the hash function representing the parameter

combination and an attribute with Ad Rank value. A tree must then be created for

each of the options, in our case we have four options and hence have created four

trees.

4.2 Results Obtained with AVL Trees

The time needed to process 100.000 visits with 1.000.000 advertisers with this

algorithm is 1.66 seconds, meaning that the algorithm runs around 9,2 million

(9.206.250 to be precise) times faster than the threads. This is due to the algorithm not

needing to access any files as the tree can be loaded from memory, and the number of

comparisons per visit for option 2 has reduced to 1.172.738.107 with the “Using

fuzzy” thread option at only 51.03 with AVL trees.

Table 6. Results obtained from AVL algorithm for 100.000 visits.

Option Seconds
 Average

Ad Rank

Average

comparisons

1 1,36 9,89 16,65

2 1,55 8,45 30,42

3 1,84 1,24 49,74

4 1,92 0,44 51,03

The average number of comparisons is calculated as the average 100.000 visits.

The results are the best possible, given that each and every one of 1.000.000

advertisers has been compared. However, when using threads we had to limit the

number by the amount of time taken and hence, the results were not the best possible

achieved.

84

Luis Miralles Pechuán, Claudia Sánchez Gómez, and Lourdes Martínez Villaseñor

Research in Computing Science 84 (2014)

5 Using Multi-Node trees to improve ad performance

5.1 Developing algorithms using Multi-Node trees

Each first level node has a number of children representing possible values a

campaign can achieve. Thus if the first campaign parameter has 29 different values,

the first level will have 29 children. Should node number 7 on the first level have a

second parameter of 12 values, then the node shall have 12 children and so forth for

all parameters. The final tree level will contain the Ad Rank value, and just as with

the AVL trees we have had to create four Multi-Node trees, one for each

configuration option.

To solve the algorithm we tried three different solutions:

1. Unordered trees: These unordered trees consume the least as they do not as they

do not have any operations to order. The trees are formed from selected

parameters in advertiser’s campaigns. The possible values are added to the tree as

campaigns are processed

2. Ordered Trees: With ordered trees we applied the same process as with the

unordered trees, though we then ordered them alphabetically by parameter name.

This was done so that the descending binary search can be used right from the

tree root to the leaves to obtain the Ad Rank value.

3. Ordered trees by frequency: In this case, we do the same as the first however we

order the trees using the frequency with which an advertiser demands a

parameter. If most advertisers configure the time as 13:00 then the most left hand

side thread will have this value, and a comparison will be made using this node.

5.2 Results Obtained by Multi-Node Trees

Table 7. Results from Multi-Node trees from 100.000 visits.

 Not ordered Ordered and using binary

search

Ordered by frequency

Option Result Seconds
Average

comparisons
Seconds

Average

comparisons
Seconds

Average

comparisons

1 9,89 0,58 20,59 0,78 37,95 0,53 18,52

2 8,45 1,18 50,90 1,17 75,68 1,03 43,59

3 1,24 1,81 73,25 1,86 99,75 1,69 64,93

4 0,44 1,61 74,98 1,65 102,42 1,65 66,64

As we can see by the number of comparisons the best option is ordering by

frequency, the second best are the unordered trees and the third best are the ones

ordered by parameter name and then having a binary search applied.

Many tree nodes can be formed by four or five nodes so doing a binary search

doesn’t make much sense, we can also discard the order by frequency option as the

85

Ad Exchange Optimization Algorithms on Advertising Networks

Research in Computing Science 84 (2014)

algorithm has 0.07% less comparisons and hence ordering them into a tree every time

a campaign is added would be unjustified.

6 Hadoop Optimizing Ad Exchanges through Apache Hadoop

One of the simplest ways to solve the problem and we can safely assume one of the

less puzzling, uses Hadoop, which was famously developed by a Yahoo employee.

Apache Hadoop is a framework oriented towards finding solutions to Big Data

problems, such is the case in point and the fact it also solves our problem in just a few

lines.

This language is oriented to take advantage of the clusters and supercomputers of

large companies such as Yahoo, Amazon and Google. These companies use this kind

of structure because they run algorithms processing huge amounts of data.

This platform uses two programming languages, Hive and Pig Latin. To solve our

problem we used Pig Latin, although it is not as efficient as the trees as it has an

additional computing cost 151.2 times higher than AVL trees and 205.9 times higher

than Multi-Node trees ordered by frequency, however it allows the problem to be

solved in just 10 lines. The code is explained in the program comments below:

-- ADVERTISERS

-- Load advertisers table from memory

Anun0 = Load 'default.anunciantes2' USING

org.apache.hcatalog.pig.HCatLoader();

-- For each line we select the columns that interest us

Anun1 = Foreach Anun0 Generate $2, $4, $8, $9, $10, $11, $12, $15,

$19*$20;

-- Then group the lines together to later select the max Ad Rank

Anun2 = Group Anun1 by ($0,$1,$2,$3,$4,$5,$6,$7);

-- Remove groups

Anun4 = For each Anun3 Generate FLATTEN($0),$1;

-- VISITS

-- Load advertisers table from memory

Visitas0 = Load 'default.visitas' USING

org.apache.hcatalog.pig.HCatLoader();

-- For each cell we select the columns that interest us

Visitas1 = For each Visit0 Generate $2, $4, $8, $9, $10, $11, $12, $15;

-- JOINING VISITS AND ADVERTISERS

-- We create a table to coincide with both visit and advertise fields

Visitas2 = Join Visitas1 by ($0,$1,$2,$3,$4,$5,$6,$7), Anun4 by

($0,$1,$2,$3,$4,$5,$6,$7);

-- We then select the columns from those tables that interest us

Res = foreach Visitas2 generate $0,$1,$2,$3,$4,$5,$6,$7,$16;

-- Save answer

store Res into 'Respuestas';

In table 8 we can see the results obtained as well as the times needed to obtain

them. Tests were done with 100.000 visits and 1.000.000 ad campaigns, and the

results obtained are the same as the ones from the AVL and Multi-Node trees. Time is

expressed in minutes and seconds, rather than solely seconds as for AVL and Multi-

Node trees.

86

Luis Miralles Pechuán, Claudia Sánchez Gómez, and Lourdes Martínez Villaseñor

Research in Computing Science 84 (2014)

Table 8. Results obtained from the algorithm using Hadoop’s Pig Latin

Option Seconds Results

1 214 9,89

2 226 8,6

3 260 1,24

4 309 0,44

7 Conclusions

According to the results, the thread option cannot be considered appropriate due to the

enormous amount of time required to run the algorithm. One of the reasons behind the

elevated time scale is the fact the program takes a long time accessing the 10.000 files

used to save advertiser’s campaigns. The number of total comparisons is the number

for each thread multiplied by the number of threads, coming to a total of

24.349.000.000 comparisons, while using trees it does not exceed 103.

Via Hash, AVL trees give the best results, although they do have two

disadvantages, firstly the tree needs to be modified for every single campaign, taking

up a lot of time; secondly, these trees are inadequate for Fuzzy Logic use given that

upon applying the hash function it gets difficult to compare attributes and establish a

degree of similarity as they are coded. In order to implement this kind of logic all

possible parameter relations would have to be hash coded with all possible

combinations, bringing us to the conclusion that this is an unviable option as it will

exponentially increase the number of tree nodes.

Another disadvantage affecting both AVL trees and Multi-Nodes is the

computational cost of creating the tree, though this is not really anything to worry

about as it can be done offline. That is to say it is not created at the time of a user

visit, and hence is not a critical computational cost.

Multi-Node trees have the advantage over AVLs that they can use Fuzzy Logic.

This can be done using a simple backtracking algorithm that traverses the tree and

changes route should the similarity threshold be overcome. Taking these results into

account, it seems that ordering is not a great advantage as looking at the results

obtained there is no big difference between the number of neither comparisons nor

time consumed.

Finally, if we take the capacity of some of the supercomputers used by technology

companies into account, Pig Latin is the best option as its algorithm development

code can be summarized in just ten lines. This has the advantage that errors are highly

unlikely as well as Fuzzy logic being able to be implemented easily via UDF (User

Defined Functions), which are user language implementation methods for both

Python and Java programming languages.

87

Ad Exchange Optimization Algorithms on Advertising Networks

Research in Computing Science 84 (2014)

8 Future Work

One possible improvement to this algorithm could be adding fuzzy logic; to do this

we must make a translation table. If we take into consideration the fact that the three

browsers in the table are similar we can then code them with the same code.

To improve comparison block searches upon fuzzy logic application a value could

be assigned to each parameter. E.G., I. Explorer 8.0 shall be 7 and I. Explorer 8.0

shall be 9, meaning the similarity between the two will be [7, 9] of the browser

matrix. With this a number of comparisons per search will be saved, this can be

calculated using the formula: Comparisons: (Lines/2 + Columns/2), assuming the

probability of coincidence for all values is the same.

Another improvement could be to keep the ordered by frequency algorithm and

instead of ordering it per new campaign, an ordering algorithm shall be applied once

per 1,000 new campaigns.

With such formula we can create a tree and then compare each visit with the

advertisers formed tree. This in turn would make the program run much faster even

though it would also require more lines of code.

References

1. IAB internet advertising revenue report. Obtained from

http://www.iab.net/about_the_iab/recent_press_releases/press_release_archive/press_relea

se/pr-122313 (2012)

2. Moe, W. W.: Targeting Display Advertising. London, UK: Advanced Database Marketing:

Innovative Methodologies & Applications for Managing Customer Relationships (2013)

3. Neslin (Eds.): Advanced Database Marketing: Innovative Methodologies & Applications

for Managing Customer Relationships, Gower Publishing, London (United Kingdom)

(2013).

4. G. Johnson: The Impact of Privacy Policy on the Auction Market for Online Display

Advertising. Simon School Working Paper No. FR 13-26 (2013)

5. B. Stone-Gross, R. Stevens, A. Zarras, R. Kemmerer, C. Kruegel, and G. Vigna.:

Understanding Fraudulent Activities in Online Ad Exchanges. In ACM SIGCOMM

Conference on Internet Measurement (IMC) (2011).

6. Y. Chen, P. Berkhin, B. Anderson, and N. R. Devanur: Real-time bidding algorithms for

performance-based display ad allocation. KDD (2011)

7. W. Zhang, S. Yuan, and J. Wang: Optimal Real-Time Bidding for Display Advertising. In

Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery

and data mining (2014)

88

Luis Miralles Pechuán, Claudia Sánchez Gómez, and Lourdes Martínez Villaseñor

Research in Computing Science 84 (2014)

http://www.iab.net/about_the_iab/recent_press_releases/press_release_archive/press_release/pr-122313
http://www.iab.net/about_the_iab/recent_press_releases/press_release_archive/press_release/pr-122313
http://www.mendeley.com/research/optimal-realtime-bidding-display-advertising/

